Unit 4: General Principles of Chemistry I

Section A

Question Number	Question	
$\mathbf{1 (a)}$	The hydrolysis of 1-bromobutane using hydroxide ions $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}(\mathrm{l})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{l})+\mathrm{Br}^{-}(\mathrm{aq})$	
		Mark
	Correct Answer	$\mathbf{1}$

Question Number	Question	
$\mathbf{1}$ (b)	The decomposition of the benzenediazonium ion $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}^{+}(\mathrm{aq})$	
		Mark
	Correct Answer	$\mathbf{1}$
	A Collecting and measuring the volume of gas	

Question Number	Question	
$\mathbf{1}$ (c)	The reaction of acidified potassium manganate(VII) with propan-2-ol to give propanone and manganese(II) sulphate	
	Correct Answer	Mark
	B Colorimetry	$\mathbf{1}$

Question Number	Question	
$\mathbf{1}$ (d)	the catalytic decomposition of hydrogen peroxide	Mark
		Correct Answer
	A Collecting and measuring the volume of gas	$\mathbf{1}$

Question Number	Question	
2	1,2-dibromoethane reacts with potassium iodide dissolved in methanol according to the equation: $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}+2 \mathrm{KI} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{KBr}+\mathrm{I}_{2}$ The rate equation for this reaction is $\begin{array}{ll} \text { A } & \text { rate }=\mathrm{k}[\mathrm{KII}]^{2}\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\right] \\ B & \text { rate }=\mathrm{k}[\mathrm{KI}]^{2} \\ C & \text { rate }=\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\right] \\ \text { D } & \text { not possible to deduce from this information } \end{array}$	
	Correct Answer D	Mark
		1

Question Number	Question
3	For the reaction between sodium bromate(V) and sodium bromide in acidic solution, the rate equation is: $\text { Rate }=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right][\mathrm{Br}]\left[\mathrm{H}^{+}\right]^{2}$ When the concentrations of all three reactants are doubled, the rate will increase by a factor of A 4 B 6 C 8 D 16
	Correct Answer ${ }^{\text {a }}$ Mark
	D

Question Number	Question	
4 (a)	Calculate $\Delta \mathrm{S}_{\text {system }}$, in $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$, for this reaction.	
	A -175.8	
	$\mathrm{~B}+175.8$	
	$\mathrm{C}-64.2$	
	D +64.2	
	Correct Answer	Mark
	B	$\mathbf{1}$

Question Number	Question	
4 (b)	Calculate $\Delta S_{\text {surroundings }}$, in $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$, for this reaction at 298 K.	
	A -192	
	$\mathrm{~B}+192$	
	$\mathrm{C}-0.192$	
	D +0.192	
	Correct Answer	Mark
	A	$\mathbf{1}$

Question Number	Question	
5	For the equilibrium, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$ Which is the correct expression for K_{p} ? $\begin{array}{rlll} \text { A } \begin{aligned} & \frac{\left[\mathrm{NH}_{3}(\mathrm{~g})\right]^{2}}{\left[\mathrm{~N}_{2}(\mathrm{~g})\right]\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{3}} \text { B } \\ & \text { C } \frac{\mathrm{P}_{\mathrm{N}_{2}(\mathrm{~g})} \mathrm{P}_{\mathrm{H}_{2}(\mathrm{~g})}}{\mathrm{P}_{\mathrm{NH}_{3}(\mathrm{~g})}} \\ & \mathrm{P}_{\mathrm{NH}_{2}(\mathrm{~g})} \mathrm{P}^{3} \mathrm{H}_{2}(\mathrm{~g}) \end{aligned} & \text { D } & \frac{\mathrm{P}_{\mathrm{N}_{2}(\mathrm{~g})} \mathrm{P}^{3} \mathrm{H}_{2}(\mathrm{~g})}{} \\ \mathrm{P}^{2} \mathrm{NH}_{3}(\mathrm{~g}) \end{array}$	
	Correct Answer	Mark
	$C \quad \frac{\mathrm{P}^{2} \mathrm{NH}_{3}(\mathrm{~g})}{\mathrm{P}_{\mathrm{N}_{2}(\mathrm{~g})} \mathrm{P}^{3} \mathrm{H}_{2}(\mathrm{~g})}$	1

Question Number	Question	
6	The expression for K_{c} for the equilibrium $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ is $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}(\mathrm{~g})\right]^{2}}{\left[\mathrm{SO}_{2}(\mathrm{~g})\right]^{2}}\left[\mathrm{O}_{2}(\mathrm{~g})\right]$ What are the units of K_{c} in this equilibrium expression? A mol dm ${ }^{-3}$ B $\mathrm{mol}^{2} \mathrm{dm}^{-6}$ C $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$ D atm ${ }^{-1}$	
	Correct Answer	Mark
	C	1

Question Number	Question	
7	For the equilibrium $2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ which one of the following changes would result in a different value of the equilibrium constant? A an increase in temperature B a decrease in pressure C an increase in pressure D an increase in the concentration of $\mathrm{NO}_{2}(\mathrm{~g})$	
	Correct Answer	
	A	Mark

Question Number	Question
8	Solutions of concentration $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ of iron(II) ions and silver(I) ions were mixed at room temperature and allowed to reach equilibrium. $\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \quad \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{~s})$ Which one of the following statements is true? A As the equilibrium position was approached, the forward reaction became slower until it stopped. B At the equilibrium position, no more $\mathrm{Ag}(\mathrm{s})$ reacted with $\mathrm{Fe} 3+(\mathrm{aq})$. C At the equilibrium position, the rate of the forward reaction equalled the rate of the backward reaction. D No $\mathrm{Fe}^{3+}(\mathrm{aq})$ reacted with $\mathrm{Ag}(\mathrm{s})$ until the equilibrium position was reached.
	Correct Answer ${ }^{\text {a }}$ (Mark
	C ${ }_{\text {C }}$ (${ }^{\text {a }}$

Question Number	Question	
9 (a)	Have the lowest concentration of hydrogen ions	
	Correct Answer	Mark
	C NH	(aq) and $\mathrm{NH}_{4} \mathrm{CL}(\mathrm{aq})$
\mathbf{l}		

Question Number	Question	
9 (b)	Act as a buffer of pH about 5	
	Correct Answer	Mark
	D CH3COOH(aq) and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}(\mathrm{aq})$	$\mathbf{1}$

Question Number	Question	
$\boldsymbol{9}$ (c)	Have a chloride ion concentration of $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$	
		Mark
	Correct Answer	$\mathbf{1}$

Question Number	Question	
10 (b)	What was the pH when $25.05 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ had been added to 25 cm^{3} of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$. A 3 B 6 C 8 D 11	
	Correct Answer	Mark
	D	1

Question Number	Question			
10 (c)	Which one of the following indicators would be MOST suitable to use to determine the end point of this titration?			
				Mark
	Correct Answer			1

Question Number	Question	
$\mathbf{1 1}$	Which one of the following organic compounds does NOT exist?	
	A an ester which is a structural isomer of a carboxylic acid $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ B a carboxylic acid which is a structural isomer of an ester $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ C an aldehyde which is a structural isomer of a ketone $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ D a ketone which is a structural isomer of an aldehyde $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	
	Correct Answer	
	D	Mark

Question Number	Question	
12 (a)	A suitable starting material for this preparation would have the formula $\mathrm{A} \mathrm{CH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COH}$ B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ $\mathrm{C} \mathrm{CH} 3 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OOH}$	
	Correct Answer	Mark
	C	1

Question Number	Question	
$\mathbf{1 2}$ (b)	Each stage in the sequence produced a 50\% yield of required product. What is the minimum number of moles of the carboxylic acid which should be used in order to produce one mole of butanamide?	
	A 0.25	
	B 2.00	
	C 2.50	
	D 4.00	
	Correct Answer	Mark
	D	$\mathbf{1}$

Question Number	Question	
$\mathbf{1 2}$ (c)	Which of the following reagents is needed to convert the carboxylic acid into the acyl chloride?	
A chlorine B phosphorus(V) chloride C hydrogen chloride D ethanoyl chloride	Mark	
	Correct Answer	$\mathbf{1}$

Question Number	Question	
$\mathbf{1 3}$ (a)	Can be made by the oxidation of a primary alcohol.	
	Correct Answer	Mark
	A Butanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	$\mathbf{1}$

Question Number	Question	
$\mathbf{1 3}$ (b)	Would be expected to react most rapidly with ethanol.	
	Correct Answer	Mark
	D Butanoyl chloride, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$	$\mathbf{1}$

Question Number	Question	
$\mathbf{1 3}$ (c)	Would have 4 different chemical shifts in its nmr spectrum and an absorption at $2500-3300 \mathrm{~cm}^{-1}$ in its infrared spectrum. Use the data booklet as a source of information.	
	Correct Answer	Mark
	A Butanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	$\mathbf{1}$

Question Number	Question	
$\mathbf{1 4}$ (a)	Which one of the following carbonyl compounds would produce a racemic mixture? $\mathrm{A} \mathrm{CH}_{3} \mathrm{COCH}_{3}$ B C2 $\mathrm{H}_{5} \mathrm{CHO}$ $\mathrm{C} \mathrm{HCHO}^{2}$ D C2 $\mathrm{H}_{5} \mathrm{COC}_{2} \mathrm{H}_{5}$	
	Correct Answer	Mark
	B	$\mathbf{1}$

Question Number	Question
14 (b)	Which of the following best represents the first step of the mechanism for this reaction with an aldehyde? A B C D
	Correct Answer ${ }^{\text {a }}$ Mark
	B

| Question |
| :--- | :--- | :--- |
| Number | Question

Question Number	Question	
$\mathbf{1 5}$ (b)	What type of reaction is this?	
	A dddition B condensation C dehydration D neutralisation	
	Correct Answer	Mark
	B	1

Section B

Question Number	Question $\mathbf{1 6}$ (a)				Give the name of this ester.		
	Acceptable Answers	Reject	Mark				
	methyl butanoate Accept Methyl butaneoate	'an' missing	$\mathbf{1}$				

Question Number	Question		
$\mathbf{1 6}$ (b)	Why does the ester have a comparatively low boiling point compared to the other three substances in the equation?		
	Acceptable Answers	Reject	Mark
	the other three substances can form intermolecular hydrogen bonds with themselves but the ester cannot.	Discussion of London Forces	$\mathbf{1}$

Question Number	Question		
$\mathbf{1 6}$ (c)	What is the name given to this type of reaction?		
		Mark	
	Correct Answer	$\mathbf{1}$	

Question Number	Question		
16. (d) QWC (i-iii)	Suggest the reasons why manufacturers choose to use the chemically manufactured pineapple flavouring rather than the natural product and why consumers might prefer to choose the natural product.		
	Acceptable Answers	Reject	Mark
	Must cover advantages and disadvantages. Must not be contradictory Advantages to manufacturers: (any two) - not dependent on weather, seasons etc - consistent taste /concentration/more consistent - quality - or alternative ideas Disadvantages to consumers: (any two) - some people put off by 'non-natural' food - may not taste the same as natural product which may - contain other impurities - unable to describe the product as organic or alternative ideas	Cost with no justification	4

Question Number	Question		
16 (e)	Give the expression for the equilibrium constant, K_{c}, for this equilibrium and calculate its value. Explain why it has no units.		
	Acceptable Answers	Reject	Mark
	$\begin{equation*} \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{C}_{3}-\frac{\mathrm{H}_{3}}{} \frac{\mathrm{COOH}(\mathrm{l})]\left[\mathrm{CH}_{3}\right.}{\left[\mathrm{C}_{3}\right.} \frac{\mathrm{OH}(\mathrm{l})]}{\mathrm{H}_{7}} \mathrm{COOCH}_{3}(\mathrm{l})\right]\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]}{} \tag{1} \end{equation*}$ Accept eq subscripts ignore significant figures unless value given to 1 s.f. The units cancel because both the top and bottom of the fraction have units of concentration squared. Or same number of moles on both sides of the equation (1)	Absence of square brackets	5

Question Number	Question		
$\mathbf{1 7}$ (a)	State the effect on the value of the equilibrium constant of an increase in temperature.		
	Acceptable Answers	Reject	Mark
	Value of equilibrium constant increases (1)		$\mathbf{1}$

Question Number	Question 17. (b) QWC (i) \& (iii)Use your answer to (i) to explain the effect of this change on the position of equilibrium.		
	Acceptable Answers	Reject	Mark
	If the equilibrium constant increases then more products will be formed (1) And the position of equilibrium will move to the right (1)	$\mathbf{2}$	

Question Number			
$\mathbf{1 8}(\mathrm{a})$	Question		
	Rewrite the equation omitting spectator ions.		
	Acceptable Answers	Reject	Mark
	Mg(s) $+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ Accept state symbols omitted	$\mathbf{1}$	

Question Number	Question				
$\mathbf{1 8}$ (b) (i)	$\Delta S_{\text {system }}$	Reject	Mark		
	Acceptable Answers				$\mathbf{2}$
	Positive because a gas is given off (1) which is more disordered and so has more entropy (1)				

Question Number	Question					
$\mathbf{1 8}$ (b) (ii)	$\Delta S_{\text {surroundings }}$	Reject	Mark			
	Acceptable Answers		$\mathbf{2}$			
	Positive because the reaction is exothermic (1)					
	and $=-\Delta \mathrm{H} / \mathrm{T}$ (1)					

Question Number				
$\mathbf{1 8}$ (b) (iii)	$\Delta S_{\text {total }}$			
	Acceptable Answers	Reject	Mark	
	Positive because the reaction occurs / total entropy change is the sum of the two positive values above.	$\mathbf{1}$		

Question Number	Question		
$\mathbf{1 8 (c) ~ (i) ~}$	Suggest the reason for cleaning the magnesium ribbon with sand paper.		
	Acceptable Answers	Reject	Mark
	Surface coated with magnesium oxide (which would react to form water rather than hydrogen).	1	

Question Number	Question		
$\begin{aligned} & 18 \text { (c) (ii) } \\ & \text { QWC } \\ & \text { (i-iii) } \end{aligned}$	Calculate the number of moles of hydrochloric acid used up when all the magnesium reacts in one experiment and hence comment on whether the change in concentration during the reaction will have a significant effect on the validity of the assumption that the initial rate is proportional to $1 /$ time. How would you overcome this potential error? [Take the relative atomic mass of magnesium as 24 in this and subsequent calculations]		
	Acceptable Answers	Reject	Mark
	Initial number of moles of $\mathrm{HCl}=20 \times 1 / 1000=0.02$ Number of moles of $\mathrm{Mg}=0.1 / 24=0.00417$ (1) number of moles of HCl which reacts is 0.00834 Therefore number of moles of HCl left $=0.01166$ (1) Ignore sig figs so the concentration nearly halves which would significantly reduce the rate and so make the assumption that the initial rate is proportional to 1/time invalid / inaccurate. (1) Increase the volume of acid to (at least) $50 \mathrm{~cm}^{3}$ (1) Or measure the time to produce less than the full amount of gas Or use a smaller piece of magnesium.		5

Question Number	Question		
18 (c) (iii)	Use the value of ΔH and other information given in the question to calculate the temperature change in an experiment assuming no energy is lost to the surroundings. Hence comment on whether this change in temperature will have a significant effect. How would you overcome this potential error? $\left[\Delta H=-467 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$. Assume that the specific heat capacity of the solution is 4.18 J $\left.\mathrm{K}^{-1} \mathrm{~g}^{-1}\right]$		
	Acceptable Answers	Reject	Mark
	$\begin{gather*} \text { Energy given out }=467000 \times 0.1 / 24 \mathrm{~J}=1946 \mathrm{~J} \\ 20 \times 4.18 \times \quad \Delta \mathrm{T}=1946 \tag{1}\\ \Delta \mathrm{~T}=23.3^{(0)} \tag{1} \end{gather*}$ Accept units of degrees celsius or kelvin This temperature change would significantly increase the rate of the reaction (1) Carry out the reaction in a water bath of constant temperature/use a larger volume of more dilute acid (1)		4

Question Number	Question		
18 (c) (iv)	The most difficult thing to measure accurately is the time it takes for the magnesium to disappear and the time measured can be up to 2 seconds out. Assuming this error, calculate the shortest time at $56^{\circ} \mathrm{C}$ AND the longest time at 10 ${ }^{0} \mathrm{C}$ for this reaction. Complete the table for these times. Plot the two points on the grid below and join them with a straight line. From the gradient, which equals $-E_{A} / R$, of this line calculate another value for the activation energy.		
	Acceptable Answers	Reject	Mark
	At 329 time 4s $1 /$ time $=0.25 \mathrm{~s}^{-1} \ln ($ rate $)=-1.39$ (1) At 283 time 124s $1 /$ time $=0.00806 \mathrm{~s}^{-1} \ln ($ rate $)=-4.82$ (1) [graph to be drawn] Plot line with new gradient $\quad=-3.43 / 0.00049$ $\begin{equation*} =-7000 \tag{1} \end{equation*}$ Accept -6800 to -7200 Activation energy $\begin{align*} & =+7000 \times 8.31 \\ & =+58.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{align*}$		4

Question Number	Question		
$\mathbf{1 8}$ (c) (v)	If the reaction mixture is not stirred, the magnesium tends to float on the surface of the acid. Suggest how this would affect the measurements of the rate of the reaction.		
	Acceptable Answers	Reject	Mark
QWC	Rate of reaction reduced because less surface area in contact with the acid. (1)	1	

Question Number	Question $\mathbf{1 8}$ (c) (vi)Suggest TWO other improvements the student could do to this experiment to improve the accuracy or validity of the results.		
	Acceptable Answers	Reject	Mark
	Any two \bullet Repeat the experiment at each of the temperatures \bullet obtain an initial rate eg by measuring the volume of gas given off before the reaction is complete. •Other sensible suggestions.	2	

Question Number	Question		
$\mathbf{1 8}$ (c) (vii)	If ethanoic acid of the same concentration and at the same temperature is used instead of hydrochloric acid, explain how the rate would differ.		
	Acceptable Answers	Reject	Mark
	The rate should be lower, since ethanoic acid is a weaker acid (compared to hydrochloric acid) and so there will be a lower concentration of hydrogen ions present.	$\mathbf{1}$	

Question Number	Question		
$\begin{aligned} & 19 \\ & \text { QWC } \\ & \text { (i-iii) } \end{aligned}$	One step in the production of nitric acid is the oxidation of ammonia. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$ This is carried out at $900^{\circ} \mathrm{C}$ over a platinum-rhodium catalyst and is an example of heterogeneous catalysis. Explain in terms of collision frequency and collision energy how the rate would change if the temperature were increased, and which of these causes the greater effect. What is the difference between a heterogeneous and a homogeneous catalyst? Suggest ONE advantage of using a heterogeneous catalyst in processes such as this.		
	Acceptable Answers	Reject	Mark
	Answer must be given in a logical order, addressing all the points using precise terminology - Collision frequency increases as particles moving more quickly (1) - More collisions have sufficient energy to overcome activation energy / more molecules on collision have energy \geq activation energy (1) - A greater proportion of collisions result in reaction (1) - Collision energy has greater effect (1) - Homogeneous all in same phase and heterogeneous in different phases / gas and solid (1) - No need to separate products from catalyst (1)	More collisions More successful collisions	6

Question Number	Question		
$\mathbf{2 0}$ (a) (i)	1 mole of P reacts with 1 mole of Br_{2} molecules to form a compound with the formula $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{OBr}_{2}$.		
	Acceptable Answers	Reject	Mark
	contains one carbon-carbon double bond Accept alkene	$\mathbf{1}$	

Question Number	Question		
$\mathbf{2 0}$ (a) (ii)	When lithium tetrahydridoaluminate is reacted with P a compound with the formula $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ is formed.		
	Acceptable Answers	Reject	Mark
	is a carbonyl compound / C=O group reduced (to $\mathrm{CH}(\mathrm{OH})$) Accept aldehyde or ketone	$\mathbf{1}$	

Question Number	Question		
$\mathbf{2 0}$ (a) (iii)	P forms an orange precipitate with 2,4-dinitrophenylhydrazine.		
	Acceptable Answers	Reject	Mark
	is a carbonyl compound Accept aldehyde or ketone		$\mathbf{1}$

Question Number	Question			
$\mathbf{2 0}$ (a) (iv)	When P is heated with Fehling's or Benedict's solution, the solution remains blue.			
	Acceptable Answers	Reject	Mark	
	is a ketone / P is not an aldehyde	aldehyde	$\mathbf{1}$	

Question Number	Question		
$\mathbf{2 0}(\mathrm{a})(\mathrm{v})$	P is a Z-isomer.	Reject	Mark
	Acceptable Answers		$\mathbf{1}$
	has two groups on the same side of a C=C Accept cis isomer		

Question Number	Question		
20 (b) (i) QWC (ii) \& (iii)	The infrared spectrum of P has the following absorptions at wavenumbers above $1600 \mathrm{~cm}^{-1}$.$\begin{aligned} & 3060 \mathrm{~cm}^{-1} \\ & 2920 \mathrm{~cm}^{-1} \\ & 1690 \mathrm{~cm}^{-1}-1660 \mathrm{~cm}^{-1} \end{aligned}$		
	Acceptable Answers	Reject	Mark
	3060 alkene (C-H stretching) 2920 alkane (C-H stretching) 1690 ketones ($\mathrm{C}=\mathrm{O}$ stretching) 1660 alkene ($\mathrm{C}=\mathrm{C}$ stretching)		3

Question Number	Question			
$\mathbf{2 0}$ (b) (ii)	The nmr spectrum does NOT have a peak corresponding to a chemical shift, δ, of between 9 and 10.			
	Acceptable Answers	Reject	Mark	
	not an aldehyde		$\mathbf{1}$	

Question Number	Question		
$\begin{array}{\|l\|} \hline 20 \text { (b) (iii) } \\ \text { QWC } \end{array}$	The mass spectrum showed the presence of peaks at mass/charge ratios of 15 and 29, but no peak at 43.		
	Acceptable Answers	Reject	Mark
	$\begin{aligned} & 15 \mathrm{CH}_{3} \text { group } \\ & 29 \mathrm{C}_{2} \mathrm{H}_{5} \text { group } \end{aligned}$ $43 \text { no } \mathrm{C}_{3} \mathrm{H}_{7} \text { group }$		3

Question Number	Question		
$\mathbf{2 0}$ (d)	How could you use a purified sample of the orange precipitate in (a)(iii) to confirm the formula of P?		
	Acceptable Answers	Reject	Mark
	Measure its melting temperature (1) (1) And compare with data book values (1)	$\mathbf{2}$	

